
UNIVERSITY OF TORONTO
FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION, APRIL 2015

CSC190H1S — COMPUTER ALGORITHMS AND DATA STRUCTURES

Exam Type: C — NO calculator allowed
Examiner(s): Pirathayini Srikantha

Student Number:

Family Name(s):

Given Name(s):

Lecture Section: LEC01 (Mon 11 am - 12 pm) LEC02 (Mon 5 pm - 6 pm)

Do not turn this page until you have received the signal to start.

In the meantime, please read the instructions below carefully.

This final examination paper consists of 5 questions on 22 pages (in-
cluding this one), printed on both sides of the paper. When you receive the
signal to start, please make sure that your copy of the final examination is
complete and fill in the identification section above.

Answer each question directly on the examination paper, in the space
provided. If you need more space for one of your solutions, use one of the
extra “blank” pages at the end of the examination and indicate clearly the
part of your work that should be marked.

Write up your solutions carefully! In particular, use notation and ter-
minology correctly and explain what you are trying to do—part marks will
be given for showing that you know the general structure of an answer, even
if your solution is incomplete.

When writing code, comments are not required except where indicated,
although they may help us mark your answers. They may also get you part
marks if you can’t figure out how to write the code.

Marking Guide

1: / 30

2: / 15

3: / 15

4: / 15

5: / 25

TOTAL: /100

Page 1 of 22 Good Luck! over. . .

April 2015 Final

Question 1. [30 marks]

This section consists of 20 multiple choice questions. For each question, circle one correct answer.

Part (a) [1.5 mark] Which one of the following is true of trees?

(a) Trees can have simple cycles

(b) At most one node in a tree must be unconnected

(c) There must exist a unique path from the root to each leaf in the tree

(d) Not all leafs in an extended tree have NULL children

Part (b) [1.5 mark] Which one of the following is true about various structures of a binary tree
containing n nodes?

(a) Complete binary trees are dense and heights of these trees are typically in the order of n

(b) It is desirable to minimize the height of a binary tree so that the length of the path from the root to
any node in the tree will not be too long

(c) The longest path in a right/left linear or zig-zag binary tree is blog2(n)c

Part (c) [1.5 mark] Which one of the following is a correct definition of a binary tree?

(a) A binary tree is either an empty tree or consists of nodes with left and right subtrees that are binary

(b) A binary tree consists of internal nodes that have two non-null children except for the leaf nodes

(c) A binary tree consists of nodes that can have from 0 to 2 children with the exception of the root
node

Part (d) [1.5 mark] What is the complexity of finding the second largest element in a min heap?

(a) O(n)

(b) O(1)

(c) O(n2)

(d) O(log(n))

(e) O(nlog(n))

Page 2 of 22 cont’d. . .

Examination CSC190H1S

Part (e) [1.5 mark] What is the complexity of finding the largest element in an AVL tree?

(a) O(n)

(b) O(1)

(c) O(n2)

(d) O(log(n))

(e) O(nlog(n))

Part (f) [1.5 mark] What is the worst case complexity of applying quick sort on the sequential
implementation of max-heap where the pivot is selected to be the first element in each sub-array division?

(a) O(n)

(b) O(1)

(c) O(n2)

(d) O(log(n))

(e) O(nlog(n))

Part (g) [1.5 mark] What is the complexity of retrieving the smallest value in a hash table?

(a) O(n)

(b) O(1)

(c) O(n2)

(d) O(log(n))

(e) O(nlog(n))

Part (h) [1.5 mark] Which one of the following sorting algorithms performs better when applied to
an array of sorted elements?

(a) Bubble sort

(b) Merge sort

(c) Heap sort

(d) Quick sort

Page 3 of 22 over. . .

April 2015 Final

Part (i) [1.5 mark] For which one of these cases is it necessary to apply a sorting algorithm to
arrange elements in ascending order?

(a) In-order traversal of a binary search tree

(b) In-order traversal of an AVL tree

(c) Removing elements from a priority queue implemented via a min-heap

(d) In-order traversal of a binary tree

Part (j) [1.5 mark] The complexity of operations on a hash table such as insertion and deletion is

(a) O(1) if the table is half full

(b) O(1) all the time

(c) O(n) is the table is half full

(d) O(log(n)) all the time

Part (k) [1.5 mark] Which one of the following is true of collision resolution policies of hash tables?

(a) Linear probing is the superior technique as the search for the next available location does not involve
too many arithmetic computations

(b) Double hashing performs better as all keys have the same probing sequence

(c) The performance of separate chaining is not as good as linear probing as colliding elements are stored
into a linked list

(d) Double hashing performs better as each distinct key has di↵erent probing sequences

Part (l) [1.5 mark] Which one of the following does not define a graph?

(a) A graph is completely defined by enumerating all paths possible between all nodes in the graph

(b) A graph is defined by taking the union of adjacency sets of all nodes in the graph

(c) A graph is completely defined by including all possible paths from a particular node in the graph

(d) A graph is completely defined by sets V and E that contain all nodes and edges in the graph

Page 4 of 22 cont’d. . .

Examination CSC190H1S

Figure 1: Graph 1

Part (m) [1.5 mark] Breadth-first traversal of the graph in Figure l starting from node 1 results in
the sequence:

(a) 1-2-3-4-5-6-8-7-9

(b) 1-4-3-2-6-5-8-7-9

(c) 1-2-5-6-7-9-3-4-8

(d) 1-2-5-6-7-9-8-3-4

(e) None of the above

Part (n) [1.5 mark] Depth-first traversal of the graph in Figure l starting from node 1 results in the
sequence:

(a) 1-2-3-4-5-6-8-7-9

(b) 1-4-3-2-6-5-8-7-9

(c) 1-2-5-6-7-9-8-3-4

(d) 1-2-5-6-7-9-3-4-8

(e) None of the above

Part (o) [1.5 mark] Which one of the following statements is correct about the graph in Figure l?

(a) Predecessors of 6 are 5, 3 and 4; Successors of 6 are 7 and 8; In-degree of 6 is 3; out-degree of 6 is 2

(b) The graph is strongly connected

(c) Predecessors of 6 are 7 and 8; Successors of 6 are 5, 3 and 4; In-degree of 6 is 2; out-degree of 6 is 3

(d) The graph is unconnected

Page 5 of 22 over. . .

April 2015 Final

Part (p) [1.5 mark] What is the topological ordering of nodes in the graph in Figure l?

(a) 1-4-3-2-6-5-8-7-9

(b) 1-2-5-6-7-9-8-3-4

(c) 1-2-3-4-5-8-6-9-7

(d) 1-2-5-6-7-9-3-4-8

(e) None of the above

Figure 2: Graph 2

Part (q) [1.5 mark] The minimal spanning tree of the graph in Figure 2 is composed of the edges:

(a) (1-4),(1-3),(3-6),(2-6),(2-5)

(b) (5-2),(2-6),(6-3),(1-4)

(c) (1-2), (2-5), (5-6), (6-4), (4-3)

(d) (2-4),(1-3),(5-6),(2-6),(2-5)

(e) None of the above

Part (r) [1.5 mark] The Prim’s algorithm used to compute the minimal spanning tree:

(a) Uses a non-greedy method to find the edges forming the minimal spanning tree in the graph

(b) Uses a greedy algorithm that is locally and globally optimal

(c) The Prim’s algorithm can be used to find the shortest path between two nodes in the graph

Page 6 of 22 cont’d. . .

Examination CSC190H1S

Part (s) [1.5 mark] At every iteration of the shortest path algorithm, a node is selected to be added
to the set W if:

(a) The weight on the edge connecting the selected node to the previously added node is the least

(b) It has the least distance to nodes in the set W

(c) It has the least number of edges connecting it to the starting vertex

Part (t) [1.5 mark] Which one of the following su�ces to conclude that a problem is NP-complete?

(a) The solution of the problem can be verified in polynomial time and is reducible to another NP-
complete problem in polynomial time

(b) If the problem can be shown to be NP-hard

(c) If the problem can be shown to be NP

(d) If the problem can be solved in exponential time by a non-deterministic machine

Page 7 of 22 over. . .

April 2015 Final

Question 2. [15 marks]

Implement the following interface functions of a queue and define the structures Queue and Node appro-
priately. The Node structure should consist of a member to store an integer data value. The underlying
implementation of the queue must be linked (i.e. not array). Your implementation must not result in
memory leaks.

• struct Queue * initQueue();

– This function dynamically allocates memory space and initializes a Queue structure.

• int dequeue(struct Queue * q);

– This function removes a Node from the queue q and returns the integer data member stored
in this node.

• void enqueue(struct Queue * q, int data);

– This function creates a node and assigns the data value into one of the member fields.

– Then it inserts this node into the queue q.

Page 8 of 22 cont’d. . .

Examination CSC190H1S

.

Page 9 of 22 over. . .

April 2015 Final

.

Page 10 of 22 cont’d. . .

Examination CSC190H1S

Question 3. [15 marks]

Suppose that you are provided with a pointer to a linked list. Each node in the linked list has the following
structure:

struct Node{

int data;

struct Node * next;

}

You are to sort nodes in this linked list using bubble sort. You should manipulate pointers in existing nodes
of the linked list so that these are rearranged in ascending order of data elements. Your implementation
must be in-place (i.e. you cannot just exchange data members in each node, you cannot use any arrays
in your implementation, etc). Your implementation can be recursive or iterative. The function you will
define has the following prototype:

• void bubbleSort(struct Node ** l1);

– l1 is the address of the pointer to the first node in the linked list

– This function has no return values

You can define additional helper functions if needed. Comment on the pros and cons of sorting a linked
list rather than an array.

Page 11 of 22 over. . .

April 2015 Final

.

Page 12 of 22 cont’d. . .

Examination CSC190H1S

.

Page 13 of 22 over. . .

April 2015 Final

Question 4. [15 marks]

Consider a directed graph containing N nodes represented by an adjacency matrix aM. In this question,
you will implement a function that verifies whether a node m is weakly connected to all other nodes in the
graph. Each node in the graph is labelled from 0 to N-1. The adjacency matrix of a graph containing N

nodes is defined by the structure adjMatrix:

struct adjMatrix{

int aM[N][N];

};

If there is an edge from node i to j, aM[i][j] is 1 otherwise aM[i][j] is 0. Assume that the following
function definitions are available to you:

• struct Queue * initQueue();

– This function dynamically allocates memory space and initializes a Queue structure.

• int dequeue(struct Queue * q);

– This function removes a node from the queue q and returns the integer data member stored
in this node.

• void enqueue(struct Queue * q, int data);

– This function creates a node and assigns the data value into one of the member fields.

– Then it inserts this node into the queue q.

• int isEmpty(struct Queue * q);

– This function returns 1 if the queue q has no nodes and returns 0 otherwise

Implement the following function which returns 1 if node m is weakly connected in the graph represented
by aM and 0 otherwise.

• int isConnected(struct adjMatrix * aM, int m);

You can define helper functions if needed.

Page 14 of 22 cont’d. . .

Examination CSC190H1S

.

Page 15 of 22 over. . .

April 2015 Final

.

Page 16 of 22 cont’d. . .

Examination CSC190H1S

Question 5. [25 marks]

Unlike AVL trees, operations such as insertion into a binary search tree do not preserve the structure of
the tree. It is possible to have an extremely skewed binary search tree after several insertions. In this
question, given the pointer to the root of a binary search tree, implement a recursive function that balances
the binary search tree (hint: some elements of this implementation are similar to inserting into an AVL
tree). A node in the binary search tree is defined according to:

struct Node{

int height;

int data;

struct Node * lChild;

struct Node * rChild;

};

Assume that you are provided with the following helper functions (you must use these in your implemen-
tation):

• struct Node * rightRotate(struct Node * n);

– This function will perform a single right rotation around the root n of a subtree and return the
new root pointer of the rotated tree

• struct Node * leftRotate(struct Node * n);

– This function will perform a single left rotation around the root n of a subtree and return the
new root pointer of the rotated tree

• int height(struct Node *n);

– This function returns value in the height member of n if n is not NULL and 0 otherwise

• int max(int i, int j);

– This function returns the maximum of two integers i and j

Implement the following function:

• struct Node * balanceBST(struct Node * n);

– This function returns the root pointer of the balanced binary search tree whose original root is
n

Page 17 of 22 over. . .

April 2015 Final

.

Page 18 of 22 cont’d. . .

Examination CSC190H1S

.

Page 19 of 22 over. . .

April 2015 Final

[Use the space on this page for rough work. Indicate clearly any work you want us to mark.]

Page 20 of 22 cont’d. . .

Examination CSC190H1S

[Use the space on this page for rough work. Indicate clearly any work you want us to mark.]

Page 21 of 22 over. . .

[Use the space on this page for rough work. Indicate clearly any work you want us to mark.]

Page 22 of 22 Total Marks = 100 End of Final Examination

Aid Sheet

• Arithmetic sequence:

S =

n�1X

i=0

(a+ id) =

n

2

(2a+ (n� 1)d)

• Geometric sequence:

S =

n�1X

i=0

ar

i
=

a(1� r

n
)

1� r

• Heaviside cover-up rules for partial fraction expansion:

ax

2
+ bx+ c

(x� d)(x� e)

2
=

A

x� d

+

B

x� e

+

C

(x� e)

2

A =

ad

2
+ bd+ c

(d� e)

2
C =

ae

2
+ be+ c

(e� d)

B : solve for B
ac

2
+ bc+ c

(c� d)(c� e)

2
=

A

c� d

+

B

c� e

+

C

(c� e)

2

where c is a constant

