UNIVERSITY OF TORONTO
FACULTY OF APPLIED SCIENCE AND ENGINEERING
FINAL EXAMINATION, APRIL 2011

CSC190H1S — ALGORITHMS, DATA STRUCTURES, AND LANGUAGES

Calculator Type: None

Examination Type: X

Examiner(s): Frangois Pitt and Kante Easley

Student Number: | | | | | | | | 1 4

Family Name(s):

Given Name(s):

Lecture Section: D LECO01 (with F. Pitt) : |:| LEC 02 (with K. Easley)

Do not turn this page until you have received the signal to start.
In the meantime, please read the instructions below carefully.

This final examination paper consists of 5 questions on 18 pages (in-
cluding this one), printed on both sides of the paper. When you receive
the signal to start, please make sure that your copy is complete, fill in the
identification section above, and write your student number where indicated
at the bottom of every odd-numbered page (except page 1).

Answer each question directly on this paper, in the space provided. If
you need more space for one of your solutions, use one of the extra “blank”

MARKING GUIDE

pages at the end of the examination and indicate clearly the part of your #1___ /22
work that should be marked. 4 2 /14
Write up your solutions carefully! In particular, use notation and ter-
minology correctly and explain what you are trying to do—part marks will # 3: /12
be given for showing that you know the general structure of an answer, even
if your solution is incomplete. #4_____ /12
When writing code, comments are not required except where indicated, 4 5: /20
although they may help us mark your answers. They may also be worth part -
marks if you can’t figure out how to write the code.
If you are unable to answer a question (or part), you will get 20% of the TOTAL: __/80
marks for that question (or part) if you write “I don’t know” and nothing
else—you will not get those marks if your answer is completely blank, or
if it contains contradictory statements (such as “I don’t know” followed or
preceded by parts of a solution that have not been crossed off).
Page 1 of 18 Good Luck! OVER...

April 2011 FINAL

Question 1. [22 MARKS]
Part (a) [2 MARKS]

Complete the line of C code below to allocate enough memory for 10 ints, and store the address of this
block of memory in variable array (assume all necessary #include directives).

int *array =
Part (b) [3 MARKS]
Complete function center below, according to its comment.

struct point { double x, y; };
struct rectangle { struct point upper_left, lower_right; };

/* Return the center of rectangle r. */
struct point center(struct rectangle r)

{

3

Part (c) [3 MARKS]
Complete function destroy below, according to its comment.

struct node { int data; struct node *next; };

/* Free the memory for every node in the linked list starting at node ’first’. x*/
void destroy(struct node *first)

{

}

Page 2 of 18 : CONT’D...

EXAMINATION

Question 1. (conTINUED)

Part (d) [2 MARKS]
What is the output of the following code?

#define SQUARE(x) ((x)*(x))

int i = 0;
while (i < 5)
printf ("%d\n", SQUARE(i++));

Part (e) [2 MARKS]
Show the output of the following code.

void perchance_swap(void **a, void **b)
{

void **temp_pptr = a;

*x(float**)a = **k(float**)b;

b = temp_pptr;

float *a = malloc(sizeof (float));

float *b = malloc(sizeof(float));
*a = 1;
*b = 2;

perchance_swap ((void**)&a, (void**)&b);
printf("%g %g\n", *a, *b);

Part (f) [2 MARKS]

Find and fix the bug (there is exactly one) in the following code.

typedef struct string buf {
unsigned capacity;
char *string;

} *string_buf_t;

string_buf_t buf;

buf->capacity = 100;

buf->string = malloc(buf->capacity);
strcpy(buf->string, "Hi there!");

Page 3 of 18 Student #: , , . o

CSC190H1S

OVER...

April 2011 FINAL

Question 1. (conTINUED)

Part (g) [2 MARKS]
e True or False: Building a heap out of n elements takes time O(nlogn) in the worst-case?

e True or False: Building a heap out of n elements takes time {(nlogn) in the worst-case?

Part (h) [2 MARKs]

In order to maintain O(1) average run time for accessing an element in an open-addressed hash table, what
are two properties that your hash table and hash function must have?

Part (i) [4 MARKS]

Add code below so that the call to gsort will sort the array of students (classlist) in increasing order
of their student number.

struct student {
long number;
char *name;

};

struct student classlist[200] = { /*...list of student names and numbers...*/ };

gsort(classlist, 200, sizeof(struct student), compare);

Page 4 of 18 CONT’D...

EXAMINATION CSC190H1S

Question 2. [14 mARKs]
Consider the following Stack ADT (adapted from class), defined in a file named “stack.h”:

#ifndef STACK_H
#define STACK_H

#include <stdbool.h> /* for bool */

/* The type used to represent a stack -- defined in the implementation file.
*/
typedef struct stack *stack_ptr_t;

/* Create and return a new Stack.

* Parameters : none

* Return value: a new Stack (NULL in case of error)

* Side-effects: memory has been allocated for a new Stack
*/
stack_ptr_t stack_create(void);

/* Free all memory allocated for a Stack.
Parameters : s != NULL: a Stack
Return value: none

* Side-effects: all memory allocated for s has been freed
*/
void stack_destroy(stack_ptr_t s);

/* Return whether or not a Stack is empty.

* Parameters : s != NULL: a Stack

Return value: true if s is empty; false otherwise

* Side-effects: none

*/ .

bool stack_is_empty(const stack_ptr_t s);

/* Add an item to the top of a Stack.

Parameters : s != NULL: a Stack; x: the item to add to s

Return value: none

Side-effects: terminates the program in case memory allocation fails
*/

void stack_push(stack_ptr_t s, void *x);

/* Remove and return the item on top of a Stack.

Parameters : s != NULL: a Stack

Return value: the item stored on top of s

Side-effects: +terminates the program in case the stack is empty

* ¥ ¥

*/
void *stack_pop(stack_ptr_t s);

#endif/*STACK_Hx*/

Page 5 of 18 Student #: , , , + . 4o OVER...

April 2011 FINAL

Question 2. (coNTINUED)

Assuming that your code will be compiled along with a file stack.c that implements stack.h, complete
the code below (and on the next page) so that function pre_order_print carries out the same work as
function pre_order_print_rec, but non-recursively.

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "stack.h"

/* A struct for "ternary" trees (where each node has at most 3 children). =*/
typedef struct tree_node {

long elem; struct tree_node *left, *middle, *right;
} tree_node_t;

/* An item on the stack used to simulate the recursive function -- WRITE THIS. =/
typedef struct stack_item {

} stack_item_t;

/* Allocate memory for a new stack_item and return a pointer to it -- WRITE THIS --
include appropriate parameters. */

static stack_item_t *new_item()

{

}

/* Free the memory allocated for a stack_item —— WRITE THIS. =*/
static void free_item(stack_item_t *item)

{

}

/* Helpers to make the stack functions easier to use. */
static void push(stack_ptr_t s, stack_item_t *x) { stack_push(s, x); }
static stack_item_t *pop(stack_ptr_t s) { return (stack_item_t *) stack_pop(s); }

Page 6 of 18 CONT’D...

EXAMINATION CSC190H1S

Question 2. (conTinuED)

/* The recursive function. */
void preorder_print_rec(tree_node_t *root)

{
if (root == NULL) return;
printf("%1d\n", root->elem);
preorder_print_rec(root->left);
preorder_print_rec(root->middle) ;
preorder_print_rec(root->right);
}

/* Write this function to do the same thing as preorder_print_rec, non-recursively. x*/
void preorder_print(tree_node_t *root)

{

}

/* Code would go here (in a main function) to create different ternary trees and call
* preorder_print_rec and preorder_print on each one, to check that both functions do
* the same thing.

*/

Page 7 of 18 Student #: __, | . . . o OVER...

April 2011 FiNAL

Question 3. [12 MARKs]
Consider a binary min heap with the following contents:

[3 [2 [8 [4 |7 J1o]9 ji2fs [[[| [|

Part (a) [2 MARKS]
Draw the tree structure for the heap above.

Part (b) [4 MARKS]
Complete the function below according to its specification (assume all necessary #include directives).

~
*

Return true if and only if the supplied array is a min heap.

* Parameters and preconditions:

* array != NULL: a pointer to an array of comparable elements, each of type void *
* size >= 0: the number of elements in the array

* cmp != NULL: a pointer to a comparison function for array elements, that returns
* <0, ==0, or > 0 as to the first element is less than, equal to, or greater
* than the second element

* Return value: true if the array is a min-heap; false otherwise

* Side-effects: none

*/

bool is_min_heap(void **array, size_t size, int (xcmp) (void*, void*))

{

Page 8 of 18 CONT'D...

EXAMINATION CSC190H1S

Question 3. (coNTINUED)

Part (c) [3 MARKS]
Show the contents of the heap from the previous page, after inserting the values 0 and 6, in that order.
Draw the heap tree after each insertion, and fill in the final content of the heap array below.

Part (d) [3 MARKS]

Show the contents of the heap after removing two values from the original heap (at the top of the
previous page). Draw the heap tree after each removal, and fill in the final content of the heap array below.

Page 9 of 18 Student #: __, | . . o o OVER...

April 2011

Question 4. [12 MaRks]

Consider the following binary tree:

12
N

6 15
NN
2 10 18
s P S

8

Part (a) [2 MARKS]
In what order are the nodes printed for an in-order and post-order print of the tree above?

e in-order:

e post-order:

Part (b) [4 MARKS]
Complete the function below according to its specification.

typedef struct node {

void *data;

int height;

struct node *left, *right;
} tree_node_t;

/* Helper function. */
int max(int x, int y) { return x >y ? x : y; }

/* Compute and return the height of the tree rooted at root. At the same time,

FINAL

set the

* height field of each node equal to the height of the subtree rooted at that node —-

* use -1 for the height of an empty tree (with root == NULL).

int set_height(tree_node_t *root)

Page 10 of 18

CONT'D...

EXAMINATION CSC190H1S

Question 4. (coNTINUED)

Part (c) [2 MARKS]
Treating the tree on the previous page as a BST, insert a node with value 9 and redraw the tree below,
showing where the new node is inserted.

Part (d) [4 MARKS]

Now, treating the original tree (without any new nodes added) as an AVL tree, insert a node with value 9
and redraw the tree below. Clearly show where the new node is inserted, and show all rotations required
to re-balance the tree.

Page 11 of 18 Student #: . . 4o OVER...

April 2011 FINAL

Question 5. [20 MARKsS]

A “multiset” is like a set, except that elements are allowed to occur multiple times. For example,
{-2,7.1, 4,7.1} is different from {7.1,.4,—2}: 7.1 appears twice in the first multiset, but only once
in the second one. Consider the following file “multiset.h”. '

/* A basic multiset ADT.
*/

#ifndef MULTISET_H

#define MULTISET_H

#include <stddef.h> /* for size_t */

/* The type of a multiset -- to be defined in the implementation.
*/
typedef struct multiset *multiset_ptr_t;

/* Create and return a new multiset.
* Return value: a new multiset (NULL in case of error)
* Side-effects: memory has been allocated for a new multiset
*/

multiset_ptr_t multiset_create(void);

/* Free all memory allocated for a multiset.

* Parameters : set != NULL: a multiset
* Side-effects: all memory allocated for set has been freed
*/

void multiset_destroy(multiset_ptr_t set);

/* Return the number of occurrences of an element in a multiset.
* Parameters : set != NULL: a multiset; elem: an element
* Return value: the number of times elem appears in set (possibly 0)
x/

size_t multiset_contains(const multiset_ptr_t set, const void *elem);

/* Insert an element into a multiset.
* Parameters : set != NULL: a multiset; elem: an element
* Side-effects: set contains one more occurrence of elem than before
*/

void multiset_insert(multiset_ptr_t set, const void *elem);

/* Remove an element from a multiset.
* Parameters : set != NULL: a multiset; elem: an element
Side-effects: set contains one less occurrence of elem than before
(but no less than O occurrences)

* *

*/

void multiset_remove(multiset_ptr_t set, const void *elem);

#endif/*MULTISET_Hx*/

Page 12 of 18 CONT’D...

EXAMINATION CSC190H1S

Question 5. (conTINUED)

Part (a) [10 MARKS]

Describe two different data structures that could be used to implement the multiset ADT (you will imple-
ment one of them in the next part of this question). For each data structure,

o describe how the multiset’s elements are stored in memory (i.e., how you organize the data)—your
code must be able to handle any number of elements (limited by the computer’s memory, of course),
state the worst-case running time of each function—it’s okay if your implementation is inefficient,
describe one main advantage of your data structure,

describe one main disadvantage of your data structure,

do NOT write any code for this part!

Page 13 of 18 Student #: | | . 4o OVER. ..

April 2011 FINAL

Question 5. (CONTINUED)
Part (b) [10 MARKS]
On this page and the next, write complete code for a file “multiset.c” that implements the multiset
ADT, using one of your data structures from the previous part. Hints:
e Write your code “top-down”: start with a high-level outline (as comments) for each function, then fill
in code to carry out each step of your outline (creating and calling helper functions as appropriate).

e Do not write a main function or any testing code! Just implement the functions from multiset.h,
along with any required types and helper functions.

e Your code will be marked on its design as well as its correctness (but not its efficiency).
e Don’t forget appropriate #include statements, constants, and types.

Page 14 of 18 CONT'D...

EXAMINATION CSC190H1S

Question 5. (conTINUED)
Part (b) (CONTINUED)

Page 15 of 18 Student #: __ , + + o 4 4 OVER...

April 2011 FINAL

[Use the space on this page for scratch work, or for any part of an answer that did not fit elsewhere.
Clearly label each answer with the appropriate question and part number.]

Page 16 of 18 CONT’D...

-

EXAMINATION CSC190H1S

[Use the space on this page for scratch work, or for any part of an answer that did not fit elsewhere.
Clearly label each answer with thé appropriate question and part number.]

Page 17 of 18 Student #: __, | . . OVER. ..

April 2011 FINAL EXAMINATION CSC190H1S

Page 18 of 18 Total Marks = 80 END OF FINAL EXAMINATION

