UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION, APRIL 2016

CSC190H1S — COMPUTER ALGORITHMS AND DATA STRUCTURES

Exam Type: A — NO calculator allowed

Examiner(s): Pirathayini Srikantha

Student Number: [| | | | [| | 1

Family Name(s):

Given Name(s):

Lecture Section: D LECO01 (Mon 11 am - 12 pm) D LEC02 (Mon 5 pm - 6 pm)

Do not turn this page until you have received the signal to start.
In the meantime, please read the instructions below carefully.

This final examination paper consists of 5 questions on 21 pages (in-
cluding this one), printed on both sides of the paper. When you receive the
signal to start, please make sure that your copy of the final examination is
complete and fill in the identification section above.

Answer each question directly on the examination paper, in the space
provided. If you need more space for one of your solutions, use one of the
extra “blank” pages at the end of the examination and indicate clearly the
part of your work that should be marked.

Write up your solutions carefully! In particular, use notation and ter-
minology correctly and explain what you are trying to do—part marks will
be given for showing that you know the general structure of an answer, even
if your solution is incomplete.

When writing code, comments are not required, although these may
help us mark your answers.

Page 1 of 21 Good Luck!

MARKING GUIDE

1 / 35

2: / 15

3: / 15

4 4; / 15

4 5: / 20
TOTAL: /100
OVER. ..

April 2016

Final

Question 1. [35 mARKs]

This section consists of 20 short answer questions. Please fill in your answers in the space provided under
each question. You can list your answers concisely in point-form.

Part (a) [1.5 MARK]

List one advantage and one disadvantage of defining a variable as a specific type

(e.g. unsigned short int, long int, etc. instead of regular int).

Part (b) [1.5 MARK]

int func(float a)
{
float b=a/6;
return b;

}

Part (c) [1.5 MARK]
nique?

Part (d) [1.5 MARK]

int * func(float a)

{

Is there a potential problem with the following code snippet? Why or why not?

What is the general idea behind the divide and conquer problem solving tech-

What are the three issues in the following code snippet?

int * b = (int *)malloc(sizeof(int));

int c;
*b=a+2;
c=%b;
return &c;

Part (e) [1.5 MARK]

Declare a function pointer variable named £Ptr that points to an already defined

function handle named sampleFunc that takes in two input arguments which are both integers and returns

a float value.

Page 2 of 21

CONT'D...

Examination . CSC190H1S

Part (f) [1.5 MARK] What does the following code snippet achieve?

int func(int a, int n)

{
return (a & (i<<n));
}

Part (g) [1.5 MARK] When a structure variable is dynamically allocated, is it necessary to also
dynamically allocate the corresponding members?

Part (h) [1.5MARK] Suppose that an algorithm has a cost f(n) € O(g(n)). State the formal definition
of the O-notation in terms of f(n) and g(n) and include a graph to illustrate this definition.

Part (i) [1.5 MARK] What is the insertion/removal policy for queues? What is the insertion/removal
policy for stacks? Which one of these linear data structures will be better suited for processing postponed
obligations?

Part (j) [1.5 MARK] What is a common structural attribute between heaps and AVL trees?

Page 3 of 21 OVER. ..

April 2016

Final

Refer to Fig. 1 for the next 4 sub-questions. The root of each tree is the top-most node.

Figure 1: Trees

Part (k) [1.5 MARK] Provide an answer for each of the following based on T1:

e Is T1 a heap, BST and/or an AVL tree?
e What is the height of the tree?

e What is the result of an in-order traversal of the tree?

Part (1) [1.5 MARK] Provide an answer for each of the following based on T2:
e Is T2 a heap, BST and/or an AVL tree?
e Is this a complete and/full tree?

o What is the result of a pre-order traversal of the tree?

Page 4 of 21

CONT'D...

Examination

Part (m) [1.5 MARK] Provide an answer for each of the following based on T3:

e Is T3 a heap, BST and/or an AVL tree?
e What is the depth of the node containing the value 97

o What is the result of a post-order traversal of the tree?

Part (n) [1.5 MARK]| Provide an answer for each of the following based on T4:
e Is T4 a heap, BST and/or an AVL tree?
e Which nodes have the same degree?

o What is the result of a level-order traversal of the tree?

CSC190H1S

Refer to Fig. 2 for the next 2 sub-questions. The root of each tree is the top-most node.

Figure 2: Trees

Part (o) [1.5 MARK] What is the topological ordering of nodes in G1?

Page 5 of 21

OVER. ..

April 2016 ‘ Final

Part (p) [1.5 MARK] What edges compose the edges of a minimal spanning tree in graph G2?

Part (q) [5 MARK] What is the algorithmic complexity of the following code snippet in big-oh nota-
tion? You may assume that n = 2* where k is a positive integer. A formal proof is not necessary but can
help with part marks if your answer is incorrect.

void £ (int n){
int j = 1;
while (j <= n){

n=n/2;

}

Part (r) [1.5 MARK] In a hash table, what degree of occupancy will guarantee constant time search
and insertion into the hash table?

Part (s) [3 MARK] Draw the step by step break-down and combination of the following array when
mergesort is applied to sort elements in the array. A=[9,8,13,2,3,10,7]

Part (t) [1.5 MARK] What is a disadvantage of using quicksort over mergesort?

Page 6 of 21 CONT'D...

Examination CSC190H1S

Question 2. [15 MARKS]

Implement the function insertBST that inserts a new node into a binary search tree (BST) which contains
an integer data value. Ensure that the insertion preserves the BST ordering. Following is the definition
of the node structure used in the BST:

struct Node {
int data;
struct Node * 1Child;
struct Node * rChild;
};

Each new node should be dynamically allocated. The function insertBST takes in two arguments. The
first argument is the pointer to the root (this can be NULL when the tree is empty at the beginning prior to
any insertion). The second argument is the value to be stored in the data member of the new node to be
inserted into the BST tree. This function returns the pointer to the root of the tree after insertion (this is
necessary especially when the tree is initially empty). Hint: Recursive implementation is straightforward.

Page 7 of 21 OVER. ..

April 2016

struct Node * insertBST(struct Node * root, int value)

{

Page 8 of 21

Final

CONT'D...

Examination

Page 9 of 21

CSC190H1S

OVER. ..

April 2016 Final

Question 3. [15 MARKs]

Implement the function bf Traversal which performs breadth-first traversal of a directed graph represented
by aM starting from the node labelled n and prints out the labels of nodes as these are being traversed.
Note that the provided underlying graph representation is an adjacency matriz. You may assume that the
following definitions and declarations are provided to you:

#define NODES 6;

struct adjMat

{
int mat [NODES] [NODES];
int visitedNodes [NODES] ;

'};

struct Queue * initQueue();

void enqueue(struct Queue * g, int node);
int dequeue(struct Queue * q);

int isEmpty(struct Queue * q);

NODES represents the total number of vertices in the graph. Labels assigned to vertices in the graph take
values in the set [0, NODES-1]. The structure adjMat provides the underlying graph representation via
the adjacency matrix mat. The entry mat [1] [j] is set to 1 if there is an edge in the graph from the vertex
labelled i to the vertex labelled j and 0 otherwise. visitedNodes member in the adjMat structure is
an array that keeps track of the nodes that have already been visited. You can assume that the adjMat
structure is populated with appropriate values representing the graph before being passed as an argument
to the function bfTraversal.

The queue interface functions can be used as helper functions for the breadth-first traversal implemen-
tation. You may assume that these interface definitions are available (i.e. you do not have to implement
these). initQueue dynamically allocates a queue structure. enqueue inserts a new node into the queue
containing information about the label of a vertex in the graph. dequeue removes a node from the queue
and returns the vertex label information stored in the removed node. isEmpty returns 1 if there are no
nodes in the queue and 0 otherwise.

As an example, consider the graph illustrated in the following figure. If the initial starting node n is
0, then the function bfTraversal should traverse the graph starting from node labelled 0 in breadth-first
order and print out the nodes as these are being traversed as follows: 0 1 3 4 5 2.

Page 10 of 21 CONT'D...

Examination CSC190H1S

void bfTraversal(struct adjMat * aM, int n)
{

Page 11 of 21 OVER. ..

April 2016

Page 12 of 21

Examination CSC190H1S

Question 4. [15 MARKS]

- Given pointers L1 and L2 to two linked lists with nodes that are dynamically allocated, implement the

function mergelinkedLists which combines both linked lists in-place (i.e. do not create new nodes)
so that nodes in L1 and L2 alternate with one another (starting with the first node in L1, then the first
node in L2, and so on). The pointer to the resulting merged linked list is returned by this function. In
your implementation, ensure that there are no memory leaks and appropriate checks for NULL values are
included. When one list is longer than the other, append all remaining nodes in the longer list to the final
list when alternation is no longer possible. Following is an example of two linked lists L1 and L2 and the
merged linked list L returned by the function.

Lie—q 1 2| 5 |—0
L2 e 2 |. 4 o 7 |e}—| 6 |e1—] 3 |+—MW
L —q1 2] 2 » 4 H 5 |~ 7 > 6 *| 3 |+—N

Following is the definition of the node structure used in the linked lists:

struct Node{
int data;
struct Node * next;

};

Page 13 of 21 ‘ OVER. ..

April 2016

struct Node * mergeLinkedLists(struct Node * L1, struct Node * L2)
{

Page 14 of 21

Final

CONT’D...

Examination

Page 15 of 21

CSC 190H1S

OVER. ..

April 2016 Final

Question 5. [20 MARKS]

Consider a directed graph represented by an adjacency list aL. Each node in the provided graph is assigned
a label from the set [0,NODES-1] where NODES is the total number of vertices in the graph. In this
question, you will implement a function that computes the total number of vertices in the longest non-
cyclic path starting from node n. Consider the following example. One of the longest non-cyclic path
starting from node 0 is 0-1-3-5-4 and there are 5 vertices in this path. 5 is the value that should be
returned by the function longestPathLength when n=0. Hint: This is similar to computing the height of
a tree. Additional measures must be taken to account for cycles introduced in graphs and the possibility of
more than two descendants per vertex in the graph.

You may assume that the following definitions are provided. You may define additional helper functions if
needed.

#idefine NODES 6
struct Noded{
int data;
struct Node * link;
};
struct adjList{
struct Node * ptrArray[NODES];
int visitedNodes[NODES];
};

The structure adjList provides the underlying graph representation where the member ptrArray contains
the adjacency set of every node in the graph (i.e. ptrArray[i] points to the adjacency set of the vertex
labelled i). The adjacency set of each node is represented by a linked list which consists of nodes each
defined by the structure Node. The data member stores the vertex label information and link points
to the next node in the linked list. The visitedNodes member of the structure adjList keeps track of
vertices in the graph that have been visited. -

Page 16 of 21 CONT'D. ..

Examination

int longestPathLength(struct adjList * aL, int n)
{

Page 17 of 21

CSC190H1S

OVER. ..

April 2016 Final

Page 18 of 21 CONT’D...

Examination

[Use the space on this page for rough work. Indicate clearly any work you want us to mark.]

Page 19 of 21

CSC190H1S

OVER. ..

April 2016 Final

[Use the space on this page for rough work. Indicate clearly any work you want us to mark.]

Page 20 of 21 CONT'D...

Examination CSC 190H1S

[Use the space on this page for rough work. Indicate clearly any work you want us to mark.]

Page 21 of 21 Total Marks = 100 END OF FINAL EXAMINATION

' Aid Sheet

¢ Arithmetic sequence:

S = ni(a.—{—z’d) = g(2a.+ (n—1)d)

i=0
e Geometric sequence:

-1
S = S art = a(l—1")
= 1—7r

e Heaviside cover-up rules for partial fraction expansion:

az?+bz+c A B C
(x—d)(z—e)? z—-d z—e (z—e)?
A_ad2+bd+c :ae2+be+c

(d—e)? (e—d)

ac® +be+c A B C

B : solve for B

(c—d)(c—e)? “e—dtoe” (c—e)?

where ¢ is a constant

