
MARKING GUIDE

 /30

 /15

 /15

 /15

 /15

TOTAL: /90

UNIVERSITY OF TORONTO
FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION, APRIL 2017

CSC 190 HIS - COMPUTER ALGORITHMS AND DATA STRUCTURES

Exam Type: A NO calculator allowed
Duration: 2.5 hours

Examiner(s): Pirathayini Srikantha

Student Number:

Family Name(s):

Given Name(s):

Lecture Section: LECO1 (Mon 11 am - 12 pm) LECO2 (Mon 5 pm - 6pm)

Do not turn this page until you have received the signal to start.
In the meantime, please read the instructions below carefully.

This final examination paper consists of 5 questions on 18 pages (in-
cluding this one), printed on both sides of the paper. When you receive the
signal to start. please make sure that your copy of the final examination is
complete and fill in the identification section above.

Answer each question directly on the examination paper, in the space
provided. If you need more space for one of your solutions, use one of the
extra"blank" pages at the end of the examination and indicate clearly the
part of your work that should be marked.

Write up your solutions carefully! In particular, use notation and ter-
minology correctly and explain what you are trying to do--part marks will
he given for showing that you know the general structure of an answer, even
if your solution is incomplete.

When writing code, comments are not required. although these may
help us mark your answers.

Page 1 of 18 Good Luck! OVER...

April 2017 Final

Question 1. [30 MARKS]

This section consists of 20 short answer questions. Please fill in your answers in the space provided under
each question. You can list your answers concisely in point-form.

Part (a) [1.5 MARK] List an advantage of each of the following:

Using header file(s)

Dividing your C code into multiple files

Using existing libraries (e.g. stdio h)

Part (b) [1.5 MARK]

value 3? Explain why.

float func(float a)
{

mt b=a/4;

return b;

3.

What value will be returned by the following function if argument a takes the

Part (c) [1.5 MARK] When and why may it be advantageous to specify the type of variable in
a program as unsigned (e.g. unsigned short int)? In a signed variable, which bit is reserved for
indicating whether the value stored in the variable is positive or negative?

Part (d) [1.5 MARK] Identify two issues in the following code snippet that may lead to undefined
behaviour of the program.

mt ** func(mt a)
{

mt * b = (mt *)malloc(sizeof(int));
mt * c =

b=a+2;

return &c;

3.

Page 2 of 18 CONT'D...

Examination GSC 19OH1S

Part (e) [1.5 MARK] Assume that a function is declared as follows: jut circle(int j);. Write
code for the following:

. Declare a function pointer variable and set it to the function circle

Print the result of calling the function via the function pointer variable where the argument is set to
2 (output formatting will not matter)

Part (f) [1.5 MARK] Consider the following code snippet. Assume that short jut requires 16 bits
for storage. What value will he stored in b at the end of the second line (express answer in decimal)?

short jut a = 13;
short jut b = a I (1<<5);

Part (g) [1.5 MARK] Suppose structure Sample is defined as follows. Write the if-statement that
compares whether the values stored in two structure variables varl and var2 of type Sample are the same.
If the values are the same, 1 is returned. Otherwise, o is returned.

struct Sample{
jut a;
jut b;

Part (h) [1.5 MARK] If an algorithm has a complexity of O(n) what does this mean in terms of the
formal definition of the big-oh notation?

Part (i) [1.5 MARK] How are recursive function calls processed in memory (similar to what ADT)?
What is the insertion and deletion policy of this ADT?

Page 3 of 18 OVER...

April 2017 Final

Part (j) [1.5 MARK] Suppose that nodes with key values 5, 19, 2, 4, 20,3 are inserted in that order
(from left to right) into a binary search tree. Illustrate the resulting tree.

Part (k) [1.5 MARK] For the tree constructed in the previous question:

. What is the height of the tree (assume that this is an extended tree)?

. What is the result of an in-order traversal of the tree?

. What is the balance factor of the root node?

Refer to Fig. 1 for the next 2 sub-questions. The root of each tree is the top-most node.

Figure 1: Trees

Part (1) [1.5 MARK] Provide an answer for each of the following based on Ti:

Is Ti a heap, BST and/or an AVL tree?

. Is this a complete and/full tree?

. What is the result of a pre-order traversal of the tree?

Page 4 of 18 CONT'D...

Examination GSC 190 HiS

Part (m) [1.5 MARK] Provide an answer for each of the following based on T2:

Is T2 a heap. BST and/or an AVL tree?

. What is the depth of the node containing the value 1?

. What is the result of a post-order traversal of the tree?

Refer to Fig. 2 for the next 6 sub-questions. The root of each graph is the node with the
vertex label 0.

Figure 2: Graphs

Part (n) [1.5 MARK] What is the adjacency matrix representation of GI?

Part (o) [1.5 MARK] What is the adjacency list representation of G2?

Page 5 of 18 OVER. . .

April 2017 Final

Part (p) [1.5 MARK] What is the result of depth-first traversal of G1 starting from node 0? What is
the largest in-degree of nodes in G1?

Part (q) [1.5 MARK] What is the result of breadth-first traversal of G2 starting from node 0? How
many cycles are there in G2?

Part (r) [1.5 MARK] Is it possible to apply topological ordering to Gi? If yes, what will be the result?
If not, why not?

Part (s) [1.5 MARK] Assume that all edges have a weight of 1 in Gi. Suppose that a minimal spanning
tree is to be constructed based on Cl. Is there a unique solution? Explain why or why not.

Part (t) [1..5 MARK] What is the advantage of using double hashing over linear probing for collision
resolution in a hash table?

Page 6 of 18 CONT'I)...

Examination CSC 19O His

Question 2. [15 MARKS]

Given a pointer L to a linked list in which nodes of type Node (defined below) are dynamically allocated,

implement the function:

. float averageLinkedList(struct Node * L, tnt * n);

which computes and returns the average of values stored in the data member of all nodes in the linked
list using recursion. Do not implement additional helper functions. If you do not use recursion, we will
still mark the question. However, a mark deduction of 5 will be applied (the highest mark you can get is
10/15). The second argument can be used as a helper variable and you can assume that it points to valid

region in memory. In the first function call *11 is initialized to 0. You can assume that the linked list has
at least one node. In the example below, the result of function averageLinkedList should be 3.75.

IN

Following is the definition of the node structure used in the linked lists:

struct Node{
mt data;
struct Node * next;

Page 7 of 18 OVER...

April 2017 Final

float averageLinkedList(struct Node * L, mt * n)

Page 8 of 18 CONTD.. .

Examination (SC 19O HI

Question 3. [15 MARKS]

Implement the function sumBST that returns the sum of the data member of nodes in a binary search tree
with values strictly greater than 10. Do not implement additional helper functions. You may or may not
use recursion (no restriction 011 either implementation).

. mt sumBST(struct Node * root);

The pointer to the root of the tree is passed as the argument to the first function call. Following is the
definition of the node structure used in the binary search tree:

struct Node {
mt data;
struct Node * iChild;

struct Node * rChild;

};

Assume that all nodes in the tree are created via dynamic allocation. If there are no nodes with data
values greater than 10, then return 0. In the following example, the result of the function call should be
57 (i.e. 18+19+20=57).

Page 9 of 18 OVER...

April 2017 Final

jut sumBST(struct Node * root)

Page 10 of 18 CONT'D...

Examination GSC 190 HiS

Question 4. [15 MARKS]

Implement the function dfTraversal which performs depth-first traversal of a directed graph represented
by aN starting from the node labelled n and prints out the labels of nodes as these are being traversed.
Do not implement additional helper functions. You may or may not use recursion (no restriction on either
implementation). Note that the provided underlying graph representation is an adjacency matrix. You
may assume that the following definitions and declarations are available to you:

#define NODES 6
struct adj Nat
{

mt matrix [NODES] [NODES];
mt vNodes [NODES];

struct Data{
iiit value;

struct Stack * mnitStackO;
void push(struct Stack * s, struct Data d);
struct Data pop(struct Stack * s);
mt isEmpty(struct Stack * s);
void deleteStack(struct Stack * s);

NODES represents the total number of vertices in the graph. Labels assigned to vertices in the graph take
values in the set [0. NODES-1]. You can assume that the adjMat structure is populated with appropriate
values representing the graph before being passed as an argument to the function dfTraversal. The stack
interface functions can he used as helper functions for the depth-first traversal implementation. You may
assume that these interface definitions are available (i.e. you do not have to implement these).

As an example, consider the graph illustrated in the following figure. If the initial starting node n is
0, then the function dfTraversal should traverse the graph starting from node labelled 0 in depth-first
order and print out the nodes as these are being traversed as follows: 0, 1, 4, 2, 3, 5.

Page 11 of 18 OVER...

April 2017 Final

void dfTraversal(struct adjMat * aN, mt n)

Page 12 of 18 CONTD...

Examination CSC 19OHJS

Question 5. [15 MARKS]

Implement in-order traversal of a tree without using recursion. Each node in the tree has the following
structure:

struct Node{
mt vLabel;
struct Node * iChild;
struct Node * rChild;

};

The function you will implement is:

. void inOrderTraversal(struct Node * root);

This function will print out the labels of nodes as these are being traversed in the tree, starting from the
root node. You can use the Stack interface functions provided in the previous question for this. The only
difference is the definition of the structure Data which is stored in each node of the stack:

struct Data{
struct Node *
mt mark;

In the following example, in-order traversal will result in 1-5-7-9-10-11

Page 13 of 18 OVER...

April 2017 Final

void inOrderTraversal(struct Node * root)

Page 14 of 18 CONT'D...

Examination CSC19OHJS

[Use the space on this page for rough work. Indicate clearly any work you want us to mark.]

Page 15 of 18 OVER...

April 2017 Final

[Use the space on this page for rough work. Indicate clearly any work you want us to mark.]

Page 16 of 18 CONTD...

Examination CSC 190 HIS

[Use the space on this page for rough work. Indicate clearly any work you want us to mark.]

Page 17 of 18 OVER...

[Use the space on this page for rough work. Indicate clearly any work you want us to mark.]

Page 18 of 18 Total Marks = 90 END OF FINAL EXAMINATION

